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a b s t r a c t

This article is concerned with the identification of probabilistic characterizations of ran-
dom variables and fields from experimental data. The data used for the identification con-
sist of measurements of several realizations of the uncertain quantities that must be
characterized. The random variables and fields are approximated by a polynomial chaos
expansion, and the coefficients of this expansion are viewed as unknown parameters to
be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve
the inverse problem. The estimated polynomial chaos coefficients are hereby themselves
characterized as random variables whose probability density function is the Bayesian pos-
terior. This allows to quantify the impact of missing experimental information on the accu-
racy of the identified coefficients, as well as on subsequent predictions. An illustration in
stochastic aeroelastic stability analysis is provided to demonstrate the proposed
methodology.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Validation is a critical requirement for physics-based prediction models to find useful applications in prognosis and engi-
neering design. The validation of a model involves providing a quantitative description of the proximity between the model
and the reality that it purports to represent, with the objective of establishing the trustworthiness of the predictions. Sto-
chastic approaches to model validation aim at using stochastic techniques to quantify the impact of missing data, modeling
errors, and discretization errors on predictions.

Several approaches for constructing stochastic models have been proposed in the literature, see e.g. the reviews [1–4].
Parametric stochastic models accommodate uncertainty by modeling local physical features of a model, such as its geomet-
rical parameters, fields of material properties and boundary conditions, by random variables and/or fields, see e.g. [1,5]. Non-
parametric stochastic models incorporate uncertainty by modeling global features of a model by random variables. An exam-
ple is the non-parametric approach proposed by Soize [6,7], where reduced matrix models are defined in terms of random
matrices.

A key task in the construction of a stochastic model is the choice of the probability distribution of the random vari-
ables, fields, or matrices. A frequently adopted approach consists in choosing one of the ‘‘labeled” probability distribu-
tions, such as the Gaussian, lognormal or Wishart distribution, and in identifying the parameters of that distribution
from experimental data. An example is the modeling of a scalar uncertain quantity by a Gaussian random variable,
and the estimation of its mean and variance from experimental data. An alternative approach has its roots in functional
analysis, and consists in representing random variables or fields by a Polynomial Chaos Expansion (PCE), see e.g.
. All rights reserved.
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[5,8–11], and in identifying the coefficients of this expansion from experimental data. The latter approach is more ver-
satile, in that it allows to represent a wider class of random variables, and also permits fast and efficient sampling from
the identified random variables or fields.

Several methodologies for the identification of representations of random variables and fields from experimental data
have already been proposed. They mostly rely on procedures from the theory of mathematical statistics, see e.g. [12,13], such
as the method of moments [14,15], maximum likelihood [15–19], Bayesian inference [20–22], maximum entropy [23] and
minimum relative entropy [14,16].

A significant challenge associated with these identification approaches consists in faithfully capturing the weight of avail-
able experimental data, and in developing error analysis capabilities to determine the value of additional data. In this con-
text, the main objective of this article is to develop a systematic methodology for quantifying the impact of missing
experimental information on the accuracy of inferred PCEs representing random variables or fields. Ghanem and Doostan
[24] and Ghanem et al. [18] have already proposed a methodology that relies on asymptotic properties of the identification
method (as more and more data become available) to characterize uncertainties associated with limited data. However,
many data sets encountered in practice are rather small to invoke asymptotic properties. We complement the previous work
by developing an alternative methodology that relies on the Bayesian paradigm and is suitable for both small and large data
sets.

This article is organized as follows. First, Sections 2 and 3 recall the representation of random variables and fields using
the Karhunen–Loeve and polynomial chaos expansions. Then, Section 4 summarizes the specific setting in which the meth-
odology will be developed together with a concise statement of the task to be undertaken. Subsequently, Sections 5 to 8,
which constitute the core of this article, expound on the Bayesian identification of PCEs. Section 9 provides details to assist
the reader in implementing the framework. Finally, Section 10 provides an illustration in stochastic aeroelastic stability anal-
ysis to demonstrate the proposed methodology.

1.1. Notations

The following notations are frequently used in this article. Let N and R denote the sets of, respectively, integers and real
scalars. Any vector x ¼ ðx1; . . . ; xnÞ 2 Rn is identified with the ðn� 1Þ column matrix of its components. Let x; y 2 Rn be two
real vectors. Then, xTy denotes the Euclidean inner product such that xTy ¼

Pn
k¼1xkyk, and kxk the Euclidean norm such that

kxk ¼
ffiffiffiffiffiffiffiffi
xTx
p

.
Let MnðRÞ be the space of square ðn� nÞmatrices X whose entries Xk‘ are in R. Then, trðXÞ denotes the trace of X such that

trðXÞ ¼
Pn

k¼1Xkk, and XT the transpose of X. The tensor product x� y of x; y 2 Rn is represented by the matrix xyT 2 MnðRÞ.
Throughout the article, ðX;F; PÞ is a probability measure space, where X is the sample space of outcomes, F the r-alge-

bra of events and P : F! ½0;1� the probability measure. The symbol Ef�g denotes the integral with respect to the probability
measure, i.e. the mathematical expectation. For instance, for a mapping u : X! R:
Efug ¼
Z

X
uðxÞdPðxÞ: ð1Þ
2. Representation of stochastic fields

This section briefly recalls the construction of finite-dimensional approximations of stochastic fields by projection on Hil-
bertian bases. The reader is referred to [5] and references therein for more details.

2.1. Projection on Hilbertian basis

Consider a second-order and mean-square continuous stochastic field faðxÞ; x 2 Dg defined on ðX;F; PÞ, with values in
Rm, and indexed by a bounded closed set D � Rn. Let fv jðxÞ;1 6 j 6 þ1g be a Hilbertian basis of functions from D into
Rm, that is to say a complete collection of orthonormal functions that satisfy
Z

D

v jðxÞTvkðxÞdx ¼ djk; ð2Þ
where djk is the Kronecker symbol, equal to 1 if j ¼ k, and to 0 otherwise. The stochastic field faðxÞ; x 2 Dg can be represented
on this Hilbertian basis as
aðxÞ ¼
Xþ1
j¼1

ajv jðxÞ; ð3Þ
in which the random variables aj are defined on ðX;F; PÞ, valued in R, of the second-order, and such that
aj ¼
Z
D

aðxÞTv jðxÞdx: ð4Þ



3136 M. Arnst et al. / Journal of Computational Physics 229 (2010) 3134–3154
2.2. Karhunen–Loeve expansion

The Karhunen–Loeve expansion is a projection of the stochastic field faðxÞ; x 2 Dg onto a particular Hilbertian basis,
which has the following form:
aðxÞ ¼ aðxÞ þ
Xþ1
j¼1

ffiffiffiffi
kj

p
gjv jðxÞ; ð5Þ
in which aðxÞ ¼ EfaðxÞg is the mean field, and the functions v jðxÞ are the solutions to the eigenvalue problem
Z
D

Raðx; x0Þv jðx0Þdx0 ¼ kjv jðxÞ; ð6Þ
normalized such that
Z
D

kv jðxÞk2dx ¼ 1; ð7Þ
where Raðx; x0Þ ¼ EfðaðxÞ � aðxÞÞ � ðaðx0Þ � aðx0ÞÞg is the matrix-valued covariance function of faðxÞ; x 2 Dg. It can be shown
that:

(i) Due to the mean-square continuity of faðxÞ; x 2 Dg and the boundedness of D, the integral covariance operator in (6)
is Hilbert–Schmidt. Due to the symmetry of its kernel, i.e. 8x; x0 2 D : Raðx; x0Þ ¼ Raðx; x0ÞT, it is self-adjoint. Due to the
positivity of the covariance matrix, i.e. 8x 2 D : Raðx; xÞ is positive, it is, moreover, positive. Hence, the eigenfunctions
v jðxÞ form a complete orthonormal basis, the eigenvalues kj form a decreasing sequence of positive values
k1 P � � �P kj P � � � ! 0, and the series of eigenvalues is convergent:
Z
D

EfkaðxÞk2gdx ¼
Z
D

trðRaðx; xÞÞdx ¼
Xþ1
j¼1

kj < þ1: ð8Þ
(ii) The random variables gj are of the second-order, centered, and orthonormal (however, they are not, in general,
independent):
8:j : Efgjg ¼ 0; ð9Þ
8j; k : Efg g g ¼ d : ð10Þ
(iii) Representation (5) converges in the mean square sense, as well as uniformly.
j k jk

Truncating expansion (5) after the dth term results in the following approximation of the stochastic field:
adðxÞ ¼ aðxÞ þ
Xd

j¼1

ffiffiffiffi
kj

p
gjv jðxÞ; ð11Þ
in which g is a random variable defined on ðX;F; PÞ with values in Rd, whose components are the random variables gj. The
truncation error reads as
aðxÞ � adðxÞ ¼
Xþ1

j¼dþ1

ffiffiffiffi
kj

p
gjv jðxÞ: ð12Þ
Based upon (7) and (10), the following estimate of the magnitude of the truncation error is obtained:
Z
D

EfkaðxÞ � adðxÞk2gdx ¼
Xþ1

j¼dþ1

kj: ð13Þ
The Karhunen–Loeve expansion can be shown to be optimal, in the sense that basis functions satisfying (6) minimize the
magnitude of the truncation error.

3. Polynomial chaos expansion

The discretization of random variables by projection on polynomial chaos is recalled next. The PCE provides for a second-
order random variable a defined on ðX;F; PÞ with values in the finite dimensional space Rm a representation as
a ¼
Xþ1

a;jaj¼0

paHaðnÞ; ð14Þ
in whicha ¼ ða1; . . . ;adÞ 2 Nm is a multi-index with modulus jaj ¼ a1 þ � � � þ am, each pa a vector in Rm; na second-order random
variable defined on ðX;F; PÞwith values in Rm, and the functions Ha form a complete set of orthonormal functions that satisfy
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EfHaðnÞHbðnÞg ¼ dab ¼ da1b1 � � � � � dambm
: ð15Þ
The random variable n is often chosen to have independent components with either a Gaussian, uniform, gamma, Chebyshev
or beta probability distribution. The function Ha is then a multi-dimensional polynomial of the form
HaðnÞ ¼ ha1 ðn1Þ � � � � � hamðnmÞ, in which haj

is, respectively, the one-dimensional normalized Hermite, Legendre, Laguerre,
Chebyshev or Jacobi polynomial of order aj. The extension to the case of basic random variables with arbitrary probability
distribution has been completed in [8].

If random variable a is valued in a finite dimensional space, as we have assumed, then representation (14) converges in
the mean-square sense. However, it should be stressed that, in the present state of the art in mathematics, the convergence
of a chaos expansion for a second-order random variable with values in an infinite-dimensional space can be obtained only if
the germ n is Gaussian [25].

Truncating expansion (14) after polynomials of order r results in the following approximation of a:
ar ¼
Xr

a;jaj¼0

paHaðnÞ; ð16Þ
incurring the following truncation error:
a� ar ¼
Xþ1

a;jaj¼rþ1

paHaðnÞ: ð17Þ
Eq. (15) enables the following estimate of its magnitude:
Efka� ark2g ¼ Efkak2g �
Xr

a;jaj¼0

kpak
2
: ð18Þ
It is noted that the number of terms in expansion (16) is equal to
jfa 2 Nm;0 6 jaj 6 rgj ¼
Xr

j¼0

ðjþm� 1Þ!
j!ðm� 1Þ! : ð19Þ
4. Problem setting

It is assumed that a complex natural or engineered system is under study. The behavior of this system is assumed to ex-
hibit variability, in the sense that each time the system is polled to measure some quantity of interest, a different value is
obtained, as if it were sampled from a probability distribution. Let a stochastic model be built of the behavior of the system
under study. Let this stochastic model accommodate variability by modeling its fields of material properties, geometrical
characteristics and/or boundary conditions by random variables or fields. We are interested here in the identification of a
probabilistic characterization of these random variables or fields from experimental data.

We would like to point out that the present setting is quite different from the context addressed in Refs. [20–22]. The
latter contributions deal with the characterization of a system that is essentially perceived as deterministic. The objective
of the inverse problems considered in those works lies in the description of that system in terms of ideally deterministic
quantities, such as applied loadings or fields of material properties. Bayesian inference techniques are applied for the pur-
pose of regularization, and involve the quantification of the uncertainty in the identified quantities stemming from exper-
imental noise or missing data. In contrast, the present paper deals with the characterization of a system that is explicitly
perceived as stochastic. The objective of the inverse problem lies, here, in the description of this system in terms of stochastic
quantities that are representative of the system variability.
5. Data available for the identification

It is assumed that a probabilistic characterization of a finite number, say m, of uncertain quantities needs to be identified.
These can, for instance, be m scalar material properties, geometrical characteristics or applied loadings. Or, they can also be
the values taken by fields of material properties, geometrical characteristics or applied loadings, at m prescribed locations, or
the projections of such fields on m appropriate basis functions (cf. Section 2).

It is assumed that a data set
faðjÞ;1 6 j 6 ng ð20Þ
of n independent and identically-distributed realizations of the uncertain quantities has been observed, each realization aðjÞ

valued in Rm.
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6. Maximum likelihood stochastic inversion

This and the next section are concerned with the identification, from the data, of a probabilistic characterization of the uncer-
tain quantities in terms of a random variable a defined on ðX;F; PÞwith values in Rm. As an ingredient for the Bayesian inverse
method that will be elaborated in the next section, we address in this section the maximum likelihood identification of a.

6.1. Discretization using a polynomial chaos expansion

Since a is a mapping from X into Rm, its identification constitutes a functional, hence infinite-dimensional, inverse prob-
lem. It can be discretized by approximating a by a truncated PCE of dimension m and order r of the form
arðpÞ ¼
Xr

a;jaj¼0

paHaðnÞ; ð21Þ
and then viewing the coefficients p ¼ fpa; 0 6 jaj < rg of this expansion as unknown parameters that must be estimated.
It is emphasized that, here, the germ n is taken as a random variable with values in Rm, i.e. the dimension of the space of

values of n is taken equal to the dimension of the space of values of a.

6.2. Identification of a polynomial chaos expansion

The method of maximum likelihood [12,13] can readily be applied to the identification of p. The likelihood of p given the
data is defined as
LðpÞ ¼
Yn

j¼1

faðaðjÞjpÞ; ð22Þ
in which fað�jpÞ denotes the Probability Density Function (PDF) of arðpÞ, which depends on p. The method of maximum like-
lihood involves optimizing LðpÞ:
p̂ ¼ arg max
p

LðpÞ: ð23Þ
In other words, parameters are chosen for which the data are most likely.

6.3. Discretization using a reduced representation

A disadvantage of expansion (21) is that the dimension of p, that is to say the number of scalar parameters to be esti-
mated, increases quickly with m, cf. (19). Unfortunately, the computational cost associated with (23) increases quickly with
the dimension of p. A methodology for the identification of representations of reduced dimension is therefore presented
next.

With reference to (11), consider an approximation of a of the form:
adðp0Þ ¼ p0 þ
Xd

j¼1

ffiffiffiffi
k̂j

q
gjv̂ j; ð24Þ
in which d is the reduced dimension, with 1 6 d 6 m, and k̂j and v̂ j the d dominant eigenvalues and eigenvectors of the sam-
ple covariance matrix Ĉa:
m̂a ¼
1
n

Xn

j¼1

aðjÞ; ð25Þ

bC a ¼
1

n� 1

Xn

j¼1

ðaðjÞ � m̂aÞ � ðaðjÞ � m̂aÞ: ð26Þ
Let the random variables gj in (24) be collected in a random vector g with values in Rd. Let g be approximated by a PCE of
dimension d and order r:
grðpdÞ ¼
Xr

a;jaj¼1

pd
aHaðnÞ: ð27Þ
Upon injecting (27) in (24), the following reduced representation is then obtained:
ad;rðpÞ ¼ p0 þ
Xd

j¼1

ffiffiffiffi
k̂j

q Xr

a;jaj¼1

pd
ajHaðnÞv̂ j: ð28Þ
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The parameters p ¼ fp0;pdg are, this time, viewed as unknown parameters that must be estimated from the data. They com-
prise the mean p0, as well as the coefficients pd ¼ fpd

a;1 6 jaj 6 rg that control the fluctuating part of the expansion.
It is emphasized that the germ n is valued in Rd, with d < m usually. In other words, the dimension d of the space of values

of n is, this time, smaller than the dimension m of the space of values of a.
It is crucial to choose d sufficiently large so as to limit the accuracy loss that may occur due to the dimension reduction

below an admissible tolerance. In this paper, we estimate the required dimension from the eigenvalue structure of bC a,
namely we choose d such that the following equation is satisfied for sufficiently small �:
Xm

j¼dþ1

k̂j ¼ �
Xm

j¼1

k̂j: ð29Þ
A more systematic analysis is required, but currently untractable, for determining the functional stochastic dimension of
arbitrary random variables and fields.

6.4. Identification of a reduced representation

The method of maximum likelihood cannot readily be applied to the identification of p0 and pd due to the following dif-
ficulty. Eq. (28) defines the random variable ad;rðpÞ with values in Rm as the transformation through a parameterized deter-
ministic mapping of a random variable n with values in Rd, with d < m usually. For fixed p, the values taken by ad;rðpÞ
therefore lie on a d-dimensional hypersurface in Rm, and the PDF fað�jpÞ vanishes everywhere in Rm, except on this hyper-
surface. The shape of this hypersurface depends on p. However, for a reasonably high number n of observations and low or-
der r of the PCE, it will generally be impossible to find parameters p such that all observations aðjÞ, being a priori arbitrary
vectors in Rm, lie on the hypersurface. In other words, it will generally be impossible to find parameters p such that all
aðjÞ belong to the support of fað�jpÞ. The likelihood
LðpÞ ¼
Yn

j¼1

faðaðjÞjpÞ; ð30Þ
in which fað�jpÞ denotes the PDF of ad;rðpÞ, therefore generally vanishes for all p, which renders the optimization problem
p̂ ¼ arg max
p

LðpÞ ð31Þ
meaningless.
We propose a two-step identification procedure to overcome this difficulty. First, we propose to identify pd by invoking

the maximum likelihood principle in terms of the reduced coordinates of the representation. The likelihood of pd is thus de-
fined by
LdðpdÞ ¼
Yn

j¼1

fgðgðjÞjpdÞ; ð32Þ
in which fgð�jpdÞ denotes the PDF of grðpdÞ, and the vectors gðjÞ are the projection of the fluctuating part of the observations
onto the reduction basis:
gðjÞk ¼
aðjÞ � m̂a
� �Tv̂kffiffiffiffiffi

k̂k

q : ð33Þ
The parameters maximizing the likelihood are then selected:
p̂d ¼ arg max
d

p
LdðpdÞ: ð34Þ
The abovementioned difficulty is, in this way, avoided, since the germ n in (27), as well as the vectors gðjÞ defined by (33), take
their values in a d-dimensional space.

Subsequently, we propose to identify p0 by invoking the maximum likelihood principle using the first-order marginal
PDFs fak

ð�jp0; p̂dÞ of the components ad;r
k ðp0; p̂dÞ of ad;rðp0; p̂dÞ. The likelihood of p0 is thus defined by
L0ðp0Þ ¼
Ym
k¼1

fak
aðjÞk jp

0; p̂d
� �

: ð35Þ
The parameters maximizing the likelihood are then selected:
p̂0 ¼ arg max
p0

L0ðp0Þ: ð36Þ
The abovementioned difficulty is avoided by using only the first-order marginal PDFs since the dimension of the space of
values of the germ n is at least 1.
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7. Bayesian stochastic inversion

A perfect probabilistic characterization of uncertain quantities cannot, in general, be deduced from a data set of only a
finite number of realizations. It is shown next how the Bayesian method, see e.g. [26–29], can be applied to quantify the
incomplete knowledge of a due to the finite length of the data set.

7.1. Identification of a polynomial chaos expansion

The Bayesian method can readily be applied to the identification of the parameters p of the PCE approximation (21) of a.
The Bayesian approach uses PDFs to represent available information on imperfectly known parameters. First, a prior PDF
qðpÞ is constructed representing whichever information is available on p in advance of acquiring the data. Then, the posterior
PDF rðpÞ, representing all information available after making the observations, is obtained as follows:
rðpÞ ¼ cqðpÞLðpÞ ¼ cqðpÞ
Yn

j¼1

faðaðjÞjpÞ; ð37Þ
in which c is a normalization constant, LðpÞ still denotes the likelihood of p, and fað�jpÞ still denotes the PDF of arðpÞ.

7.2. Identification of a reduced representation

The Bayesian method can be applied as follows to the identification of the parameters p0 and pd of the reduced approx-
imation (28) of a. Let the PDF qðpdÞ represent the prior information available on pd. The posterior on pd then reads as
rðpdÞ ¼ cdqðpdÞ
Yn

j¼1

fgðgðjÞjpdÞ; ð38Þ
in which cd is a normalization constant, fgð�jpdÞ still denotes the PDF of grðpdÞ, and each gðjÞ is still defined by (33).
Similarly, letting PDF qðp0Þ represent the prior information available on p0, the posterior on p0 reads as
rðp0jpdÞ ¼ c0ðpdÞqðp0Þ
Yn

j¼1

Ym
k¼1

fak
aðjÞk jp

0;pd
� �

; ð39Þ
in which c0ðpdÞ is a normalization constant, and fak
ð�jp0;pdÞ the PDF of a d;r

k ðp0;pdÞ.
Finally, the posterior on p ¼ fp0;pdg is obtained as
rðpÞ ¼ rðp0jpdÞrðpdÞ ¼ c0ðpdÞcdqðp0ÞqðpdÞ
Yn

j¼1

Ym
k¼1

fak
aðjÞk jp

0;pd
� �Yn

j¼1

fgðgðjÞjpdÞ: ð40Þ
It should be noted that the posterior (38) on pd is independent of p0. In contrast, the posterior (39) on p0 depends on pd since
the likelihood (35) of p0 depends on pd.

7.3. Selection of the prior PDF

Gaussian [22], non-informative [29], conjugate [27], reference [26], and maximum entropy [28] priors have been pro-
posed and used in the literature. In this paper, we use the improper uniform PDF as a non-informative prior on the polyno-
mial coefficients if no information is available concerning these coefficients in advance of observing the data. And we suggest
using a maximum entropy prior when information concerning their mean, covariance or other generalized moments is avail-
able. A maximum entropy prior can be constructed following e.g. the approach by Soize [30].

Clearly, inferences based on priors constructed in this way are dependent on our choice of coordinate system (in this case
the coordinates with respect to the polynomial chaos). It is expected that the significance of this dependence diminishes as
more information is used in synthesizing the prior.

7.4. Remark concerning uncertainty in the covariance estimate

It should be noted that, while the random variables gj in the Karhunen–Loeve expansion (5) are orthonormal, neither our
maximum likelihood procedure (Section 6.4), nor our Bayesian procedure (Section 7.2) enforces the random variables gj in
(24) to be orthonormal. In other words, the coefficients pd

a in (27) are not required to be such that random vector grðpdÞ in
(27) has orthonormal components.

The justification is the following. Due to the finite length of the data set, the sample covariance matrix bC a is only an
approximation of the covariance matrix that would ideally represent the covariance of the uncertain quantities to be char-
acterized. The scalars k̂j and the vectors v̂ j in (24) are chosen as the eigenvalues and eigenvectors of bC a. Hence, if we had
required the random variables gj in (24) to be orthonormal, then we would effectively have enforced bC a to be the covariance
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matrix of a (up to a small discrepancy due to the dimension reduction), and we would not have accommodated in the pos-
terior PDF (40) the uncertainty in the covariance due to the finite length of the data set. By not enforcing orthonormality, we
allow the Bayesian machinery to accommodate the aforementioned uncertainty in the posterior.

8. Polynomial chaos expansion with random coefficients

The uncertainty in the coefficients of the representation of a, which is represented by the Bayesian posterior, can explic-
itly be accommodated in this representation by modeling these coefficients themselves by random variables, see e.g
[24,18,31,9].

To be specific, let the methodology outlined in Section 7.1 have been followed to approximate the random variable a by a
PCE of the form
arðpÞ ¼
Xr

a;jaj¼0

paHaðn1; . . . ; nmÞ; ð41Þ
and obtain a posterior rðpÞ of form (37). Let p collect ~m scalar parameters, with
~m ¼ m
Xp

j¼0

ðjþm� 1Þ!
j!ðm� 1Þ! : ð42Þ
Consider then the PCE of dimension ~m and order ~r of the form
p~r ¼
X~r

b;jbj¼0

qbHbðnmþ1; . . . ; nmþ ~mÞ; ð43Þ
where the coefficients q ¼ fqb;0 6 jbj 6 ~rg and the order ~r are such that the PDF of p~r is a sufficiently accurate approximation
of rðpÞ on R

~m.
Upon introducing (43) in (41), a random variable
ar;~r ¼
Xr

a;jaj¼0

X~r

b;jbj¼0

qbaHbðnmþ1; . . . ; nmþ ~mÞHaðn1; . . . ; nmÞ; ð44Þ
is obtained, which represents the variability in the system under study, as well as the incomplete knowledge of this
variability.

This reasoning can readily be extended to the reduced representations of the form (28), and this extension is therefore not
explicitly further elaborated here.

9. Implementation

Algorithm 1 lists step by step how the likelihood LðpÞ defined by (22) can be computed efficiently. This algorithm can
readily be adapted to obtain strategies to calculate the likelihoods defined by (32) and (35).

Algorithm 1. computation of likelihood LðpÞ defined by (22)
� Step 1: initialization: Choose a number MC of Monte Carlo samples.
� Step 2: Monte Carlo simulation: Simulate a set fns; 1 6 s 6 MCg of MC independent realizations of n. For each

s 2 f1 6 s 6 MCg, use (21) to compute the realization
ar
sðpÞ ¼

Xr

a;jaj¼0

paHaðnsÞ: ð45Þ
� Step 3: likelihood approximation: Estimate a PDF f MC
a ð�jpdÞ from the samples far

sðpÞ; 1 6 s 6 MCg. Compute the
likelihood as
LMCðpÞ ¼
Yn

j¼1

f MC
a ðaðjÞjpdÞ: ð46Þ
Algorithm 1 requires in step 2 the computation of realizations of random variables. Methods for the simulation of random
variables are surveyed in [32]. Step 3 requires the estimation of a PDF from a set of samples. The kernel density estimation
method is used in this work [33–35]. We use the product kernel density estimation method for multivariate density estima-
tion. And we use Scott’s data-based rule for the estimation of the anisotropic kernel bandwidths, see e.g. Section 6.3 in [35].

Considering that the likelihood functions to be maximized in (23), (34) and (36) may have multiple local maxima and that
it may be difficult to accurately calculate gradients with respect to the parameters, we suggest applying a global-search
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gradient-free optimization method. The simulated annealing [36,32,37] and the genetic optimization method [38,39] are
natural choices. The latter is used here.

Algorithm 2 lists step by step how samples from the posterior PDF rðpÞ defined by (40) can be generated using the Gibbs
Markov Chain Monte Carlo (MCMC) method, see e.g. [32]. This algorithm can readily be adapted to obtain a strategy to sam-
ple from posterior PDF rðpÞ defined by (37).

Algorithm 2. MCMC sampling from r(p) by (40)
� Step 1: initialization: Choose a number MCMC of MCMC samples and an initial value pð0Þ ¼ fp0ð0Þ;pdð0Þg.
� Step 2: given fp0ðkÞ;pdðkÞg, generate fp0ðkþ1Þ;pdðkÞg: For each ‘ 2 f1 6 ‘ 6 mg, sample p0ðkþ1Þ

‘ , with reference to (39),
from
r p0ðkþ1Þ
1 ; . . . ; p0ðkþ1Þ

‘�1 ; �;p0ðkÞ
‘þ1 ; . . . ;p0ðkÞ

m jpdðkÞ
� �

: ð47Þ
� Step 3: given fp0ðkþ1Þ;pdðkÞg, generate fp0ðkþ1Þ;pdðkþ1Þg: For each ‘ 2 f1 6 ‘ 6 jpdjg, sample pdðkþ1Þ
‘ , with reference to

(38), from
r pdðkþ1Þ
1 ; . . . ; pdðkþ1Þ

‘�1 ; �;pdðkÞ
‘þ1 ; . . . ;pdðkÞ

jpd j

� �
: ð48Þ
� Step 4: Repeat steps 2 and 3 for k 2 f1 6 k 6 MCMCg.
Algorithm 2 requires in step 1 the choice of an initial value. We use the maximum likelihood estimate as starting point.
Steps 2 and 3 involve the generation of samples from one-dimensional PDFs. Inverse transform sampling, see e.g. [32], is
applied in this work. The required cumulative distribution function is hereby obtained by numerical integration of the
PDF over a suitable subinterval of the real line.

Finally, it is noted that the coefficients q of PCE (43) can be estimated following a two-step procedure. First, samples from
posterior PDF rðpÞ can be generated following algorithm 2. Then, the coefficients can in principle be estimated from these
samples using the method of maximum likelihood.

10. Illustration

This section demonstrates the proposed methodology on a case history in stochastic aeroelastic stability analysis. The
reader is referred to [40,41] and references therein for more details concerning deterministic and stochastic aeroelastic sta-
bility analysis.

10.1. Problem setting

Consider a collection of similar, but not perfectly identical, panels, each occupying at static equilibrium a box-shaped region
D ¼ � ‘
2
< x1 <

‘

2
;�w

2
< x2 <

w
2
;� h

2
< x3 <

h
2

� �
; ð49Þ
in a Cartesian reference frame ðx1; x2; x3Þ (Fig. 1). All panels are assumed to have identical in-plane dimensions ‘ and w, and
thickness h. Let D be the middle plane such that D ¼ D�� � h

2 ;
h
2 ½. Let C ¼ @D�� � h

2 ;
h
2 ½ denote the lateral boundary.

We are interested in the dynamical behavior of the panels while clamped along C and immersed in a supersonic flow in
direction x1. Since the panels are not perfectly identical, the flow velocity above which aerodynamic flutter instabilities occur
is different for each panel. This illustration is concerned with the prediction of this scatter in the onset of flutter.

10.2. Simulated data

Data are synthetically generated using a stochastic model. The Kirchhoff–Love theory is used to represent the dynamical
panel behavior, and the piston theory is applied to represent the forces exerted by the flow on the panel. Variability is accom-
modated by modeling fields of material properties by random fields.

The material is assumed elastic and isotropic. The Young’s modulus is modeled by a lognormal random field
fYðx1; x2Þ; ðx1; x2Þ 2 Dg defined on ðX;F; PÞ, indexed by D and with values in Rþ0 such that
Yðx1; x2Þ ¼ Y exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðd2 þ 1Þ

q
gðx1; x2Þ �

1
2

logðd2 þ 1Þ
	 


; ð50Þ
in which Y is the mean, d the coefficient of variation, and fgðx1; x2Þ; ðx1; x2Þ 2 Dg a Gaussian random field with zero mean and
autocorrelation function
Rgðy1; y2Þ ¼ Efgðx1; x2Þgðx1 þ y1; x2 þ y2Þg ¼
4L2

p2y2
1

sin2 py1

2L

� � 4L2

p2y2
2

sin2 py2

2L

� �
; ð51Þ



Fig. 1. Problem setting: schematic representation of the panel in the supersonic flow.
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where L is the spatial correlation length of the Gaussian random field. The Poisson ratio, denoted by m, is taken deterministic
and homogeneous. Let the random field fDðx1x2Þ; ðx1; x2Þ 2 Dg represent the corresponding plate bending rigidity field such
that
D ¼ Yh3

12ð1� m2Þ : ð52Þ
Let q denote the deterministic and homogeneous mass density.
Let ½0; T� be the time interval of interest. Let u0ðx1; x2Þ and u1ðx1; x2Þ be prescribed initial displacement and velocity fields.

For a fixed realization, i.e. for a fixed x 2 X, the dynamical behavior of the panel is then described by an initial boundary
value problem, which consists in finding the position- and time-dependent displacement field uðx1; x2; t;xÞ such that
@2

@x2
1

þ @2

@x2
2

 !
D

@2u
@x2

1

þ @
2u
@x2

2

 ! !
� q ¼ �qh

@2u
@t2 in D��0; T½; ð53Þ
with the boundary conditions
u ¼ 0 on @D��0; T½; ð54Þ
@u
@x1
¼ 0 on @Dðx1 ¼ 	

‘

2
Þ��0; T½; ð55Þ

@u
@x2
¼ 0 on @Dðx2 ¼ 	

w
2
Þ��0; T½; ð56Þ
and with the initial conditions
uðx1; x2; 0Þ ¼ u0ðx1; x2Þ in D; ð57Þ
@u
@t
ðx1; x2; 0Þ ¼ u1ðx1; x2Þ in D: ð58Þ
Eq. (53) is the classical Kirchhoff–Love plate equation. The piston theory models the force field exerted by the flow as
q ¼ � q1v2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 � 1

q M2
1 � 2

M2
1 � 1

1
v1

@u
@t
þ @u
@x1

 !
; ð59Þ
in which q1; v1; a1 and M1 ¼ v1=a1 are, respectively, the mass density, flow velocity, sound velocity and Mach number of
the freestream flow.

For a fixed realization, the weak formulation of (53)–(58) consists in finding the position- and time-dependent displace-
ment field uðx1; x2; t;xÞ such that for all sufficiently regular displacement fields wðx1; x2Þ satisfying the boundary conditions
(54)–(56) and 8t 2�0; T½:
Z
D

qh
@2u
@t2 wdSþ

Z
D

D
@2u
@x2

1

@2w
@x2

1

þ 2
@2u

@x1@x2

@2w
@x1@x2

þ @
2u
@x2

2

@2w
@x2

2

 !
dS ¼

Z
D

qwdS; ð60Þ
and the initial conditions (57) and (58) are fulfilled.
The Finite Element (FE) method is the natural choice for the spatial discretization of (60). Let the real and virtual displace-

ment fields be expanded on FE basis functions v j as
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uhðx1; x2; t;xÞ ¼
X

j

ujðt;xÞv jðx1; x2Þ; ð61Þ

whðx1; x2Þ ¼
X

j

wjv jðx1; x2Þ: ð62Þ
For a fixed realization, the Galerkin projection of (60) reads as
M
d2u

dt2 þ Kuþ Aðv1Þ
du
dt
þ Bðv1Þu ¼ 0; ð63Þ
in which the mass matrix M, stiffness matrix K, aerodynamic damping matrix Aðv1Þ and aerodynamic stiffness matrix Bðv1Þ
are defined by
Mjk ¼
Z
D

qhvkv jdS; ð64Þ

Kjk ¼
Z
D

D
@2vk

@x2
1

@2v j

@x2
1

þ 2
@2vk

@x1x2

@2v j

@x1x2
þ @

2vk

@x2
2

@2v j

@x2
2

 !
dS; ð65Þ

Ajkðv1Þ ¼
q1v2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
1 � 1

q M2
1 � 2

M2
1 � 1

1
v1

Z
D

vkv jdS; ð66Þ

Bjkðv1Þ ¼
q1v2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
1 � 1

q Z
D

@vk

@x1
v jdS: ð67Þ
The stability of system (63) can be explored using an eigenvalue approach. Eq. (63) is, for this purpose, rewritten in the fol-
lowing first-order form:
M 0
0 M

� � d2u
dt2

du
dt

" #
þ

Aðv1Þ K þ Bðv1Þ
�M 0

� � du
dt

u

" #
¼

0
0

� �
; ð68Þ
to which the following eigenvalue problem is associated:
�
Aðv1Þ K þ Bðv1Þ
�M 0

� �
uj ¼ kj

M 0
0 M

� �
uj: ð69Þ
The eigenvalues kj can be shown to occur in complex conjugate pairs. If the real part of an eigenvalue pair is positive, then the
coupled fluid–structure system is unstable.

Numerical results are presented for ‘ ¼ 1:25 m; w ¼ 1 m; h ¼ 0:003 m; Y ¼ 70 GPa; d ¼ 0:1; L ¼ 0:25 m; m ¼
0:33; q ¼ 2700 kg=m3; q1 ¼ 0:45 kg=m3, and a1 ¼ 295 m=s. The FE model is constituted of 25� 20 plate elements of equal
size.

Fig. 2 shows one realization of the random Young’s modulus field.
For this realization, Fig. 3 shows the real and imaginary part of the 20 lowest (by magnitude) eigenvalues of eigenproblem

(69) as a function of the velocity of the freestream flow. It is observed that the real part of all eigenvalues is negative for
velocities lower than about 580 m/s. However, beyond about 580 m/s, the real part of one pair of eigenvalues becomes po-
sitive. Hence, the system becomes unstable. The critical flow velocity is referred to as the flutter onset.

To illustrate this dynamic instability, Fig. 4 compares the response to an initial perturbation of the panel while submersed
in a flow of velocity 500 m/s to its response to the same initial perturbation while submersed in a flow of velocity 600 m/s.
The below critical flow at 500 m/s is observed to dampen the vibratory panel motion. In contrast, the above critical flow at
600 m/s results in panel motion growing exponentially with time.

A Monte Carlo analysis has been performed, which involved the calculation of the onset of flutter for a large number of
realizations of the stochastic model. Fig. 5 shows the PDF of the onset of flutter estimated from a sufficiently large number of
those samples. This PDF is viewed as the PDF which ideally represents the scatter in the onset of flutter in the collection of
panels under study.

Three different data sets of the form (20) are generated using the stochastic model described above. They, respectively,
collect n ¼ 10; n ¼ 25, and n ¼ 500 realizations of the eigenfrequencies of the five lowest-order longitudinal bending eigen-
modes of the panel, solving the structural eigenproblem
Kuj ¼ k2
j Muj: ð70Þ
With reference to (20), each aðjÞ is valued in ðRþÞ5 and collects five eigenfrequencies. Table 1 lists the data set of length n ¼ 10
(to allow the reader to reproduce results).
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Fig. 2. Simulated data: one realization of the random Young’s modulus field.
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Fig. 4. Simulated data: transient vertical response at the center of the panel due to an initial perturbation for freestream flow velocity: (a) 500 m/s and (b)
600 m/s.
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Fig. 5. Simulated data: ideal PDF for the onset of flutter.

Table 1
Simulated data: data set of length 10.

j (–) aðjÞ1 (Hz) aðjÞ2 (Hz) aðjÞ3 (Hz) aðjÞ4 (Hz) aðjÞ5 (Hz)

1 22.0644 38.7277 65.6377 102.7264 149.1156
2 22.1918 39.3277 66.7944 104.3363 151.4071
3 22.3315 38.9836 67.0343 103.7631 150.5413
4 21.7841 38.1275 64.5681 100.6018 146.1258
5 22.7409 40.4047 68.7806 107.0412 155.2916
6 22.5119 40.0706 68.4612 106.8598 155.1919
7 21.9770 38.6460 65.4526 102.1728 148.2193
8 22.0674 38.7597 65.5012 102.6038 148.8000
9 22.5796 39.5998 67.1365 105.1058 152.9256
10 21.5810 37.6697 63.8471 99.9416 145.1024
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10.3. Stochastic model to be identified

Let a deterministic FE model be built based upon the Kirchhoff–Love plate theory and the piston theory of the form
M
d2u

dt2 þ Kuþ Aðv1Þ
du
dt
þ Bðv1Þu ¼ 0; ð71Þ
to describe the aerodynamical behavior of a panel with dimensions ‘ ¼ 1:25 m; w ¼ 1 m and h ¼ 0:003 m, Young’s modulus
Y ¼ 70 GPa, Poisson ratio m ¼ 0:33, and mass density q ¼ 2700 kg=m3, clamped along its lateral boundary, and submersed in
a supersonic flow of velocity v1, mass density q1 ¼ 0:45 kg=m3, and sound velocity a1 ¼ 295 m=s. Let this model be pro-
jected onto the five lowest-order longitudinal bending eigenmodes of the structural eigenproblem
Kuj ¼ k2
j Muj; ð72Þ
to obtain a deterministic Reduced-Order Model (ROM) of the form
Mred d2q

dt2 þ Kredqþ Aredðv1Þ
dq
dt
þ Bredðv1Þq ¼ 0; ð73Þ

u ¼ Tq; ð74Þ
where the transformation matrix T defines the reduction basis, matrices Mred ¼ TTMT ; Kred ¼ TTKT ; Aredðv1Þ ¼ TTAðv1ÞTT

and B redðv1Þ ¼ TTBðv1ÞT are the reduced mass, stiffness, aerodynamic damping and aerodynamic stiffness matrices, and,
for a fixed t;qðtÞ is the vector of the generalized coordinates.

Let uncertainty be accommodated by modeling the structural eigenfrequencies by random variables aj, while keeping the
structural eigenmodes deterministic, to obtain a stochastic ROM of the form:
Mred d2q

dt2 þ Diag ð2pajÞ2
� �

qþ A redðv1Þ
dq
dt
þ Bredðv1Þq ¼ 0; ð75Þ

u ¼ Tq; ð76Þ
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in which Diagðð2pajÞ2Þ is a diagonal random matrix with diagonal elements ð2pajÞ2, and the matrices T ;Mred;Aredðv1Þ and
Bredðv1Þ are deterministic.

Let the random variables aj be collected in a random vector a with values in ðRþÞ5. A reduced representation of a will be
identified from each data set next.

10.4. Maximum likelihood stochastic inversion

The methodology presented in Section 6.3 is followed to approximate, for each data set, random variable a by a reduced
representation of the form
Fig. 6.
(dashed

Fig. 7.
25 and

Table 2
Maximu

p̂0
1

3.09
ad;rðpÞ ¼ exp p0 þ
Xd

j¼1

ffiffiffiffi
k̂j

q Xr

a;jaj¼1

pd
ajHaðnÞv̂ j

 !
; ð77Þ
in which k̂j and v̂ j denote the eigenvalues and eigenvectors of the sample covariance matrix, random variable n with values
in Rd is chosen to have independent standard Gaussian components, and Ha is the multidimensional Hermite polynomial of
multi-index a. The exponential serves to ensure positivity.
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Maximum likelihood stochastic inversion: eigenvalues of the sample covariance matrices associated with the data sets of length 10 (dotted line), 25
line) and 500 (solid line).
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Maximum likelihood stochastic inversion: loglikelihood log LdðpdÞ as a function of the number MC of Monte Carlo samples for the data set of length
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101 ¼ �0:9837; pd
102 ¼ �0:0209; pd

011 ¼ �0:0035 and pd
012 ¼ �0:8734.

m likelihood stochastic inversion: optimal coefficients identified from the data set of length 10.

p̂0
2 p̂0

3 p̂0
4 p̂0

5 p̂d
101 p̂d

102 p̂d
011 p̂d

012

93 3.6641 4.1937 4.6396 5.0126 �0.9837 �0.0209 �0.0035 �0.8734
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Fig. 8. Maximum likelihood stochastic inversion: PDF for the onset of flutter predicted by the stochastic ROM identified from the data set of length (a) 10,
(b) 25 and (c) 500 (dashed line), and ideal PDF predicted by the data-generating model (solid line).
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Fig. 9. Bayesian stochastic inversion: first-order marginal posterior PDF over p0
1 for the data set of length 25 estimated from 10 (dotted line), 100 (dash-

dotted line), 1000 (dashed line), and 5000 (solid line) MCMC samples.

Table 3
Bayesian stochastic inversion: five realizations of p0 and pd obtained by MCMC sampling from the posterior associated with the data set of length 10.

p0
1 p0

2 p0
3 p0

4 p0
5 pd

101 pd
102 pd

011 pd
012

3.1005 3.6678 4.1879 4.6357 5.0029 0.2100 �1.1100 1.9800 0.0300
3.0977 3.6587 4.1819 4.6495 5.0087 0.1800 0.8400 �0.6600 0.5400
3.1056 3.6610 4.1949 4.6405 4.9979 0.2100 0.8700 �1.5600 0.9600
3.0977 3.6610 4.2001 4.6299 4.9954 0.9600 �0.6900 0.4200 1.4400
3.0926 3.6617 4.1819 4.6291 5.0162 0.9600 �0.3600 0.2100 �1.0800
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Fig. 6 shows the eigenvalues of the sample covariance matrices, suggesting that, for each data set, a reduced representa-
tion of dimension d ¼ 2 is able to represent more than 95% of the variability in the eigenfrequencies. All results to follow
have been obtained with dimension d ¼ 2 and order r ¼ 1.

The methodology presented in Section 6.4 is followed to infer, from each data set, optimal coefficients p̂0 and p̂d using the
method of maximum likelihood. This involves the numerical approximation of the PDFs fgð�jpdÞ and fak

ð�jp0; p̂dÞ by the kernel
density estimation method from samples generated by Monte Carlo simulation. Fig. 7 shows the loglikelihood log LdðpdÞ de-
fined by (32) as a function of the number MC of Monte Carlo samples for the data set of length 25 and a specified value of pd.
Reasonable convergence is obtained for MC ¼ 10;000. All results to follow have been obtained using MC ¼ 10;000 samples.
Table 2 lists the optimal coefficients identified from the data set of length 10.

Each of the three identified sets of optimal coefficients defines via (75)–(77) a stochastic ROM. Each of these ROMs has
been used to predict a PDF for the onset of flutter by Monte Carlo simulation. Fig. 8 compares the three PDFs thus obtained
to the ideal PDF predicted by the data-generating model.

As the length of the data set increases to infinity, the PDF predicted by the identified stochastic ROM can be expected to
converge to some asymptotic PDF. However, the latter should be expected to differ from the ideal PDF predicted by the data-
generating model due to modeling errors associated with the dimension reductions performed while constructing the sto-
chastic ROM.
10.5. Bayesian stochastic inversion

The methodology presented in Section 7.2 will now be followed to construct posterior PDFs over p0 and pd. The improper
uniform PDF over the coefficients is hereby used as a non-informative prior.

For each data set, algorithm 2 is implemented to sample from the posterior by MCMC simulation. Low-order marginal
posterior PDFs can efficiently be estimated from these samples by kernel density estimation. Fig. 9 shows the first-order
marginal posterior PDF thus obtained over p0

1 for the data set of length 25 as a function of the number MCMC of samples.
Reasonable convergence is obtained for MCMC ¼ 5000. All results to follow have been obtained using, respectively,
10,000, 5000 and 250 samples for the inferences from the data sets of lengths 10, 25 and 500.

Fig. 10 shows for each data set the first-order marginal posterior PDF over p0
1. This PDF is interpreted as a quantitative

description of the uncertainty in p0
1 due to the finite length of the data set. It is observed that better knowledge of p0

1 is ac-
quired as more data is collected.

Table 3 lists five realizations of p0 and pd sampled from the posterior associated with the data set of length 10. Each of
these realizations corresponds via (75)–(77) to a stochastic ROM, which has been used to predict a PDF for the onset of flutter



3.05 3.075 3.1 3.125 3.15
0

100

200

300

400

500

Coefficient [−]

PD
F 

[−
]

3.05 3.075 3.1 3.125 3.15
0

100

200

300

400

500

Coefficient [−]

PD
F 

[−
]

3.05 3.075 3.1 3.125 3.15
0

100

200

300

400

500

Coefficient [−]

PD
F 

[−
]

Fig. 10. Bayesian stochastic inversion: first-order marginal posterior PDF over p0
1 associated with the data set of length (a) 10, (b) 25 and (c) 500.
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Fig. 11. Bayesian stochastic inversion: five PDFs for the onset of flutter predicted by five stochastic ROMs corresponding to five sets of coefficients sampled
from the posterior PDF associated with the data set of length (a) 10, (b) 25 and (c) 500 (dashed lines), and ideal PDF predicted by the data-generating model
(solid line).
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Fig. 12. Bayesian stochastic inversion: posterior 99%-confidence region for the PDF for the onset of flutter for the data set of length (a) 10, (b) 25 and (c) 500
(filled), and ideal PDF predicted by the data-generating model (solid line).
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by Monte Carlo simulation. Fig. 11a compares the PDFs thus obtained to the ideal PDF predicted by the data-generating mod-
el. Figs. 11b and c are similar figures for the data sets of lengths 25 and 500.

Fig. 12 shows, for each data set, a Bayesian posterior 99%-confidence region for the PDF for the onset of flutter. It is such
that the realizations of the latter PDF corresponding to realizations of p0 and pd sampled from the posterior PDF (cf. Fig. 11)
lie within this region with a probability exceeding 99%. This confidence region is interpreted as a quantitative description of
the uncertainty in the predicted PDF for the onset of flutter due to the finite length of the data set. Better knowledge of this
PDF is acquired as more data are gathered.

11. Conclusion

We have developed a Bayesian inverse methodology for the identification of PCEs from experimental data. The procedure
provides a quantitative characterization of the impact of missing experimental information on the accuracy of the identified
PCEs, and can hence be used to estimate the value of additional data, as required for resource allocation aimed at improving
predictions.
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